
An Introduction to
High-Throughput Computing
Filip Křikava
I3S Laboratory, CNRS, France

1

The Goal

• Get both the theoretical and practical knowledge in
operating Condor

• Understand what is High-Throughput Computing (HTC)
and how does it differs from High-Performance
Computing (HPC)

• Have some fun!

2

Outline

• An Introduction to High-Throughput Computing

• An Introduction to Condor

• Practical Condor hands-on session in the lab

3

An Introduction to High-Throughput
Computing

4

A Warm Up

Distributed
Computing

5

• Many ways!

ParallelismConcurrency

• Multiple processes

• Threads

• Cooperative multitasking

• Coroutines

• Asynchronous
programming

• Multiple processes

• Threads

• Distribute systems

• Doing many things at once

• Typically on one host

• Doing many things across
multiple machines,
simultaneously

• Many cores on many
machines

• Doing many things
simultaneously

Concurrency vs Parallelism vs
Distributed Computing

Distributed
Computing

6

• Many ways!

ParallelismConcurrency

• Multiple processes

• Threads

• Cooperative multitasking

• Coroutines

• Asynchronous
programming

• Multiple processes

• Threads

• Distribute systems

• Doing many things at
once

• Typically on one host

• Doing many things
across multiple
machines,
simultaneously

• Many cores on many
machines

• Doing many
things
simultaneously

Why do we need this?

• The problem is:
• How to maximize performance

• throughput
• utilization
• response time

• of a given system

• How to maximize the value of an investment in hardware for a
given workload?

• Those were the problem of the 60’s

Distributed Processing System

• High Availability and Reliability

• High System Performance

• Ease of Modular and Incremental
Growth

• Autonomic Load and Resource
Sharing

• Good Response to Temporary
Overloads

• Easy Expansion in Capacity and/or
Function

P. H. Enslow, “What is a Distributed Data Processing System?, Computer,
January 1978

8

Definitional Criteria for a
Distributed Processing System

• From P. H, Enslow and T. G. Saponas “Distributed and Decentralized
Control in Fully Distributed Processing Systems”, Technical Report,
1981

• Multiplicity of Resources
• Component Interconnection
• Unity of Control
• System Transparency
• Component Autonomy

9

Moore’s Law

• “For the past 30 years, computer performance have been driven by Moore’s Law

Amdahl’s law

• “For the past 30 years, computer performance have been driven by Moore’s Law
now it will be driven by Amdahl’s law.”
- Doron Rajwan, Intel Corp.

1

(1− P) + P
S

The GRID

What it is to you?

12

The Grid

July 1998, 701 pages

13

The Grid

July 1998, 701 pages December 2003, 748 pages

14

The Anatomy of the Grid -
Enabling Scalable Virtual

Organizations
• The Anatomy of the Grid - Enabling Scalable Virtual Organizations, Ian

Foster, Carl Kesselman and Steven Tuecke 2001

• “We have provided in this article a concise statement of the Grid
problem, which we define as controlled resource sharing and
coordinated resource use in dynamic, scalable virtual
organizations. We have also presented both requirements and a
framework for a Grid architecture, identifying the principal
functions required to enable sharing within VOs and defining key
relationships among these different functions.”

15

The Grid

• Promised to fundamentally change the way we thing about and use
computing

• Connecting multiple regional, national and international
computational grids

• Universal source of

• pervasive computing

• dependable computing

• Clear vision of

• what

• why

• who

• how 16

Grid Computing

• Partnership between clients and servers

• Clients must have more responsibilities
• powerful mechanisms for dealing with recovering from failures

• remote execution
• work management
• data output

• clients have to be smart!

• Servers provide careful protocols

Douglas Thain and Miron Livny, “Building Reliable Clients and
Servers”, The Grid, 2nd ed, 2003

17

The Grid

• From an interview with Vittorio Severino, CIO of Hartford Life
• The Hartford Financial Services Group, Inc. (NYSE: HIG)

• fortune 100 Company,
• one of America’s largest investment and insurance company

• Q: “What do you expect to gain from grid computing? What are
your main goals?”

• Severino: “Well number one was scalability.

...

Second, we obviously wanted scalability with stability. As we
brought more servers and desktops onto the grid we didn’t make
it any less stable by having a bigger environment.”

18

Challenges

• Race Conditions

• Name spaces

• Distributed Ownership

• Heterogeneity
• Object Addressing

• Data Caching

• Object Identity

• Trouble Shooting
• ... any many others

19

High Throughput Computing

• First introduced in 1996 at a seminar at the NASA Goddard
Flight Center, 1997 appeared in HPCWire

• Scientific progress and quality of research are strongly linked to
computing throughput
• Less concern of instantaneous computing power
• More concern of the amount of computing they can use over

longer period of time
• HPC is all about FLOPS instantaneously

• HTC is about delivering high perfomanceover a long period of
time

• HTC != 60*60*24*7*52*FLOPS

20

Grids and Clouds

• Grid focus has been remote job delegation

• Cloud focus is about resource allocation

• If you want to do real work in distributed computing you need
both!

21

An Introduction to Condor

22

• Distributed computing research project in Computer Sciences,
est. 1985

• Essentially: a workload management system for compute-intensive
jobs

• Researched, Developed and Maintained by the Condor Team at
the University of Wisconsin-Madison in US together with RedHat
and others

• Large open source code base C/C++ ~680,000 LOC
• An option to use as a scheduler on Amazon EC2 (CycleCloud)

• Widely used in both Academia and Industry

• Condor is a hunter of idle workstations

• http://www.cs.wisc.edu/condor/

23

24

http://www.cs.wisc.edu/condor/map 25

http://www.cs.wisc.edu/condor/map
http://www.cs.wisc.edu/condor/map

Condor Topics

• Matchmaking

• Running a job

• Workflows

• MPI on Condor wings

26

Matchmaking

• Matchmaking is a fundamental to Condor

• It is a two process
• Job describes what it needs

• “I need Linux with 2GB of RAM”
• Machine describes what it requires

• “I’m Linux and I will only run jobs from Physics
department”

• It allows preferences
• “I need Linux with more memory, but any machine you

provide will do”

27

ClassAds

• Is a way to express these
preferences together with
facts
• The executable is

“myapplication”
• Available memory should

“> 2GB”

• Almost schema-free
• User-extensible

• Name-value pairs with
expression support

Example

28

Schema-free ClassAds

• There is a minimal schema imposed by Condor

• Owner is a string

• JobId is a number

• User can easily extend it, however they like, for both jobs and
machines
• AnalysisJobType = “simulation”

• HasJava_1_4 = TRUE

• ShoeLength = 7

• Matchmaking the uses these attributes
• Requirements = OpSys == "LINUX"
&& HasJava_1_4 == TRUE

29

Submitting Jobs

• Users submit jobs from a computer
• Jobs described as ClassAds
• Each submission computer has a queue
• Queues are not centralized
• Submission computer watches over queue
• Can have multiple submission computers
• Submission handled by condor_schedd

Condor_schedd
Queue

30

31

Advertising Computers

• Machine owners describe computers

• Configuration file extends ClassAd

• ClassAd has dynamic features

• Load Average

• Free Memory

• …

• ClassAds are sent to Matchmaker

Matchmaker
(Collector)

ClassAd
Type = “Machine”
Requirements = “…”

32

Matchmaking

• Negotiator collects list of computers
• Negotiator contacts each schedd

• What jobs do you have to run?

• Negotiator compares each job to each computer
• Evaluate requirements of job & machine

• Evaluate in context of both ClassAds

• If both evaluate to true, there is a match

• Upon match, schedd contacts execution computer

33

Matchmaking
Service

Job queue service

Information
service

Matchmaking Diagram

condor_schedd

Queue

Matchmaker

CollectorNegotiator

12

3

34

Manages
Remote Job

Manages Machine

Running a Job

condor_schedd

Queue

Matchmaker

condor_collectorcondor_negotiator

condor_startd

condor_submit

Manages
Local Job

condor_shadow condor_starter

Job

35

Condor Daemons

• Master - Takes care of other processes

• Collector - Stores ClassAds

• Negotiator - Performs matchmaking

• Schedd - Manages job queue

• Shadow - Manages job (submit side)

• Startd - Manages computer

• Starter - Manages job (execution side)

36

Condor Daemons

• Master - Takes care of other processes

• Collector - Stores ClassAds

• Negotiator - Performs matchmaking

• Schedd - Manages job queue

• Shadow - Manages job (submit side)

• Startd - Manages computer

• Starter - Manages job (execution side)

Some Notes

• One negotiator/collector per pool

• Can have many schedds (submitters)

• Can have many startds (computers)

• A machine can have any combination of:
− Just a startd (typical for a dedicated cluster)
− schedd + startd (perhaps a desktop)
− Personal Condor: everything

Example Pool 1

Single Schedd
(One job queue)

Matchmaker

Dedicated Cluster
(Machine Room)

Example Pool 1a

Schedd
(One job queue)

Matchmaker

Dedicated Cluster
(Machine Room)

Fail-Over
Matchmakers

Fail-Over
Schedd

Example Pool 2

Desktop Schedds
& Execute Nodes
(Many job queues)

Matchmaker

Dedicated Cluster
(Machine Room)

Note: Condor’s policy capabilities
let you choose when desktops act
as execute nodes.

41

Sample Condor Pool

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@paradent-29. LINUX X86_64 Unclaimed Idle 0.080 4031 0+00:00:04
slot2@paradent-29. LINUX X86_64 Unclaimed Idle 0.000 4031 0+00:00:05

slot3@paradent-29. LINUX X86_64 Unclaimed Idle 0.000 4031 0+00:00:06
slot4@paradent-29. LINUX X86_64 Unclaimed Idle 0.000 4031 0+00:00:07

slot5@paradent-29. LINUX X86_64 Unclaimed Idle 0.000 4031 0+00:00:08
slot6@paradent-29. LINUX X86_64 Unclaimed Idle 0.000 4031 0+00:00:09

...

 Total Owner Claimed Unclaimed Matched Preempting Backfill

 X86_64/LINUX 200 0 0 200 0 0 0

 Total 200 0 0 200 0 0 0

This output comes from the condor_status

42

Summary

• Condor uses ClassAd to represent state of jobs and machines

• Matchmaking operates on ClassAds to find matches

• Users and machine owners can specify their preferences

43

Four Steps to Run a Job

1. Choose a Universe for your job

2. Make your job batch-ready

3. Create a submit description file

4. Run condor_submit

44

1. Choose a Universe

• There are many choices

• Vanilla: any old job

• Standard: checkpointing & remote I/O

• Java: better for Java jobs

• MPI: Run parallel MPI jobs

45

2. Make your job batch-ready

• Must be able to run in the background: no interactive input,
windows, GUI, etc.

• Can still use STDIN, STDOUT, and STDERR (the
keyboard and the screen), but files are used for these instead
of the actual devices

• Organize data files

46

3. Create a Submit Description
File

• A plain ASCII text file (any file extension)
• Not a ClassAd (although looks very similar)
• But condor_submit will make a ClassAd from it

• Tells Condor about your job:
• Which executable,
• Which universe,
• Input, output and error files to use,
• Command-line arguments,
• Environment variables,
• Any special requirements or preferences

47

Simple Submit Description File

Simple condor_submit input file
(Lines beginning with # are comments)
NOTE: the words on the left side are not
case sensitive, but filenames are!
Universe = vanilla
Executable = analysis
Log = my_job.log
Queue

48

4. Run condor_submit

• You give condor_submit the name of the submit file
you have created:

 condor_submit my_job.submit

• condor_submit parses the submit file, checks for it
errors, and creates a ClassAd that describes your job.

49

The Job Queue

• condor_submit sends your job’s ClassAd to the
schedd

• Manages the local job queue

• Stores the job in the job queue

•Atomic operation, two-phase commit

•“Like money in the bank”

• View the queue with condor_q

50

An example submission

% condor_submit my_job.submit
Submitting job(s).
1 job(s) submitted to cluster 1.

% condor_q
-- Submitter: perdita.cs.wisc.edu :
<128.105.165.34:1027> :
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
1.0 roy 7/6 06:52 0+00:00:00 I 0 0.0 foo

1 jobs; 1 idle, 0 running, 0 held

51

Some details

• Condor sends you email about events

• Turn it off: Notification = Never

• Only on errors: Notification = Error

• Condor creates a log file (user log)

• “The Life Story of a Job”

• Shows all events in the life of a job

• Always have a log file

• Specified with: Log = filename

52

Sample Condor User Log

000 (0001.000.000) 05/25 19:10:03 Job submitted from host: <128.105.146.14:1816>

...

001 (0001.000.000) 05/25 19:12:17 Job executing on host: <128.105.146.14:1026>

...

005 (0001.000.000) 05/25 19:13:06 Job terminated.

 (1) Normal termination (return value 0)

 Usr 0 00:00:37, Sys 0 00:00:00 - Run Remote Usage

 Usr 0 00:00:00, Sys 0 00:00:05 - Run Local Usage

 Usr 0 00:00:37, Sys 0 00:00:00 - Total Remote Usage

 Usr 0 00:00:00, Sys 0 00:00:05 - Total Local Usage

 9624 - Run Bytes Sent By Job

 7146159 - Run Bytes Received By Job

 9624 - Total Bytes Sent By Job

 7146159 - Total Bytes Received By Job

...

Job submitted from host: <128.105.146.14:1816>

Job executing on host: <128.105.146.14:1026>

Job terminated.
(1) Normal termination (return value 0)
 Usr 00:00:37, Sys 00:00:00 - Run Remote Usage
 Usr 00:00:00, Sys 00:00:05 - Run Local Usage
 Usr 00:00:37, Sys 00:00:00 - Total Remote Usage
 Usr 00:00:00, Sys 00:00:05 - Total Local Usage
 9624 - Run Bytes Sent By Job
 7146159 - Run Bytes Received By Job
 9624 - Total Bytes Sent By Job
 7146159 - Total Bytes Received By Job

53

Universe = vanilla
Executable = /home/krikava/condor/my_job.condor
Log = my_job.log
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr
Arguments = -arg1 -arg2
InitialDir = /home/krikava/condor/run_1
Queue

More Submit Features

54

Removing Jobs condor_rm

• If you want to remove a job from the Condor
queue, you use condor_rm

• You can only remove jobs that you own (you can’t
run condor_rm on someone else’s jobs unless
you are root)

• You can give specific job ID’s, or you can remove
all of your jobs with the “-all” option.
• condor_rm 21 ·Removes job 21
• condor_rm -all ·Removes all of your jobs
• condor_rm filip ·Removes all filip’s jobs

55

How can my jobs access
their data files?

56

Access to Data in Condor

• Use shared filesystem if available
• Not available for today’s exercises

• No shared filesystem?
• Condor can transfer files

• Can automatically send back changed files
• Atomic transfer of multiple files
• Can be encrypted over the wire
• This is what we’ll do in the exercises

• Remote I/O Socket
• Standard Universe can use remote system calls (more on

this later)

57

Universe = vanilla
Executable = my_job
Log = my_job.log
ShouldTransferFiles = IF_NEEDED
Transfer_input_files = dataset$(Process), common.data
Queue 600

Condor File Transfer
• ShouldTransferFiles = YES

• Always transfer files to execution site
• ShouldTransferFiles = NO

• Rely on a shared filesystem
• ShouldTransferFiles = IF_NEEDED

• Will automatically transfer the files if the submit and execute
machine are not in the same FileSystemDomain

58

Some of the machines in
the Pool do not have

enough memory or scratch
disk space to run my job!

59

Specify Requirements

• An expression (syntax similar to C or Java)
• Must evaluate to True for a match to be made

Universe = vanilla
Executable = my_job
Log = my_job.log
InitialDir = run_$(Process)
Requirements = Memory >= 256 && Disk > 10000
Queue 600

60

Specify Rank

• All matches which meet the requirements can be
sorted by preference with a Rank expression.

• Higher the Rank, the better the match

Universe = vanilla
Executable = my_job
Log = my_job.log
Arguments = -arg1 –arg2
InitialDir = run_$(Process)
Requirements = Memory >= 256 && Disk > 10000
Rank = (KFLOPS*10000) + Memory
Queue 600

61

My jobs run for very long time

• What happens when they get pre-empted?
• How can I add fault tolerance to my jobs?

62

• Condor can support various combinations of
features/environments in different “Universes”

• Different Universes provide different functionality for
your job:
• Vanilla: 	

 	

 Run any serial job

• Scheduler: 	

 Plug in a scheduler

• Standard: 	

 	

 Support for transparent process
	

 	

 	

 	

 	

 checkpoint and restart

Condor’s Standard Universe to
the rescue!

63

Process Checkpointing

• Condor’s process checkpointing mechanism
saves the entire state of a process into a
checkpoint file
• Memory, CPU, I/O, etc.

• The process can then be restarted from right
where it left off

• Typically no changes to your job’s source code
needed - however, your job must be relinked
with Condor’s Standard Universe support
library

64

Relinking Your Job for Standard
Universe

To do this, just place “condor_compile” in front of the command
you normally use to link your job:

% condor_compile gcc -o myjob myjob.c
- OR -

% condor_compile f77 -o myjob filea.f
fileb.f

65

Limitations of the
Standard Universe

• Condor’s checkpointing is not at the kernel level. Thus in
the Standard Universe the job may not:
• fork()
• Use kernel threads
• Use some forms of IPC, such as pipes and shared

memory
• Many typical scientific jobs are OK
• Must be same gcc as Condor was built with

66

When will Condor checkpoint
your job?

• Periodically, if desired (for fault tolerance)
• When your job is preempted by a higher priority job

• When your job is vacated because the execution
machine becomes busy

• When you explicitly run:
• condor_checkpoint
• condor_vacate
• condor_off
• condor_restart

67

Remote System Calls

• I/O system calls are trapped and sent back to
submit machine

• Allows transparent migration across
administrative domains
• Checkpoint on machine A, restart on B

• No source code changes required

• Language independent

• Opportunities for application steering

68

Job
I/O
Lib

Remote I/O

condor_schedd condor_startd

condor_shadow condor_starter

File

69

Clusters and Processes
• If your submit file describes multiple jobs, we call this

a “cluster”

• Each cluster has a unique “cluster number”

• Each job in a cluster is called a “process”
• Process numbers always start at zero

• A Condor “Job ID” is the cluster number, a period,
and the process number (“20.1”)

• A cluster is allowed to have one or more processes.
• There is always a cluster for every job

70

Example Submit Description
File for a Cluster

Example submit description file that defines a
cluster of 2 jobs with separate working directories
Universe = vanilla
Executable = my_job
log = my_job.log
Arguments = -arg1 -arg2
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr
InitialDir = run_0
Queue ·Becomes job 2.0
InitialDir = run_1
Queue ·Becomes job 2.1

71

% condor_submit my_job.submit-file

Submitting job(s).

2 job(s) submitted to cluster 2.

% condor_q

-- Submitter: perdita.cs.wisc.edu : <128.105.165.34:1027> :

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

 2.0 frieda 4/15 06:56 0+00:00:00 I 0 0.0 my_job

 2.1 frieda 4/15 06:56 0+00:00:00 I 0 0.0 my_job

2 jobs; 2 idle, 0 running, 0 held

Submitting The Job

72

Submit Description File for a
BIG Cluster of Jobs

• The initial directory for each job can be specified as
run_$(Process), and instead of submitting a single
job, we use “Queue 600” to submit 600 jobs at
once

• The $(Process) macro will be expanded to the
process number for each job in the cluster (0 -
599), so we’ll have “run_0”, “run_1”, … “run_599”
directories

• All the input/output files will be in different
directories!

73

Submit Description File for a
BIG Cluster of Jobs

Example condor_submit input file that defines
a cluster of 600 jobs with different directories
Universe = vanilla
Executable = my_job
Log = my_job.log
Arguments = -arg1 –arg2
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr

InitialDir = run_$(Process) ·run_0 … run_599
Queue 600 ·Becomes job 3.0 … 3.599

74

More $(Process)

• You can use $(Process) anywhere.

Universe = vanilla
Executable = my_job
Log = my_job.$(Process).log
Arguments = -randomseed $(Process)
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr

InitialDir = run_$(Process) ·run_0 … run_599
Queue 600 ·Becomes job 3.0 … 3.599

75

Sharing a directory

• You don’t have to use separate directories.

• $(Cluster) will help distinguish runs

Universe = vanilla
Executable = my_job
Arguments = -randomseed $(Process)
Input = my_job.input.$(Process)
Output = my_job.stdout.$(Cluster).$(Process)
Error = my_job.stderr.$(Cluster).$(Process)
Log = my_job.$(Cluster).$(Process).log
Queue 600

76

Job Priorities

• Are some of the jobs in your sweep more interesting than others?

• condor_prio lets you set the job priority

• Priority relative to your jobs, not other peoples
• Priority can be any integer

• Can be set in submit file:

• Priority = 14

77

DAGMan

• DAGMan allows you to specify the dependencies between
your Condor jobs, so it can manage them automatically for
you.

• Example: “Don’t run job B until job A has completed
successfully.”

• Recall LIGO DAG from Miron’s talk?

• 250,000+ jobs in a DAG

Directed
Acyclic Graph Manager

78

What is a DAG?

• A DAG is the data structure used by
DAGMan to represent these
dependencies.

• Each job is a node in the DAG.

• Each node can have any number of
“parent” or “children” nodes – as long
as there are no loops!

A

B C

D

OK:

A

B C

Not OK:

Example of a LIGO Inspiral DAG

80

Defining a DAG

• A DAG is defined by a .dag file, listing each of its nodes and
their dependencies:

•Job A a.sub
•Job B b.sub
•Job C c.sub
•Job D d.sub

•Parent A Child B C
•Parent B C Child D

Job A

Job B Job C

Job D

Job A a.sub

Job B b.sub

Job C c.sub

Job D d.sub

Parent A Child B C
Parent B C Child D

81

DAG Files….

• The complete DAG is five files

One DAG File: Four Submit Files:

Universe = Vanilla
Executable = analysis…

82

Submitting a DAG

• To start your DAG, just run condor_submit_dag with
your .dag file, and Condor will start a personal DAGMan
process which to begin running your jobs:

•% condor_submit_dag diamond.dag

• condor_submit_dag submits a Scheduler Universe job with
DAGMan as the executable.

• Thus the DAGMan daemon itself runs as a Condor job, so you
don’t have to baby-sit it.

83

DAGMan

Running a DAG

• DAGMan acts as a scheduler, managing the
submission of your jobs to Condor based on the
DAG dependencies.

Condor
Job
Queue

B C

D

A

A
.dag
File

84

DAGMan

Running a DAG (cont’d)

• DAGMan holds & submits jobs to the Condor queue
at the appropriate times.

Condor
Job
Queue

C

D

B

C

B

A

85

DAGMan

Running a DAG (cont’d)

• In case of a job failure, DAGMan continues until it can no
longer make progress, and then creates a “rescue” file with
the current state of the DAG.

Condor
Job
Queue

X

D

A

B
Rescue

File

86

DAGMan

Recovering a DAG

• Once the failed job is ready to be re-run, the rescue
file can be used to restore the prior state of the
DAG.

Condor
Job
Queue

C

D

A

B
Rescue

File

C

87

DAGMan

Recovering a DAG (cont’d)

• Once that job completes, DAGMan will continue the
DAG as if the failure never happened.

Condor
Job
Queue

C

D

A

B

D

88

DAGMan

Finishing a DAG

• Once the DAG is complete, the DAGMan job itself is
finished, and exits.

Condor
Job
Queue

C

D

A

B

89

DAGMan & Log Files
• For each job, Condor generates a log file

• DAGMan reads this log to see what has happened

• If DAGMan dies (crash, power failure, etc…)

• Condor will restart DAGMan
• DAGMan re-reads log file

• DAGMan knows everything it needs to know

Opportunistic Computing with
Condor

• Computing power is everywhere and Condor is trying to make it
usable by anyone.

• Every laptop/workstation can have Condor running

• Define rules when it can be used to run a job

• Let share the computing power by building cheap Grids

90

Topics Not Covered

• Condor Flocking
• allows a job to run in a different pool when it cannot

immediately run it the submitted pool

• Condor-C
• allows jobs in one machine's job queue to be moved to

another machine's job queue
• highly resistant to network disconnections and machine

failures on both the submission and remote sides

• Condor-G
• using Condor to submit to different Grid middlewares

• and many others...

91

Acknowledgement

• A big thanks to Condor Team at University of Wisconsin-Madison
• especially

• prof. Miron Livny
• dr. Alain Roy

• the original author of the Condor presentation and
exercises at IWSGC’10 which was the main source for
this session

http://www.cs.wisc.edu/condor/

http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/

